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An important mechanism affecting the transition between the annular and mist or froth flow 
regimes in multiphase flow is the shearing action of the gas flow on three-dimensional waves 
which arise from the instability of the annular film flow. It is the propensity of film flow to be 
unstable with respect to three-dimensional disturbances which is of interest here. We will 
restrict our attention to the linear stability problem for planar film flow of a viscous liquid 
having nonzero surface tension in contact with an inviscid ambient phase. 

The limit of linear stability for this flow can be determined solely by considering two- 
dimensional waves. This is a consequence of Squire's theorem which states that if a flow is 
stable until the Reynolds number exceeds a certain critical value, the neutral wave which 
marks the limit of stability at the critical Reynolds number must be two-dimensional. Squire's 
theorem, however, does not imply that the first manifestation of instability must be a 
two-dimensional wave. The most prominent wave which is frequently observed, corresponds to 
the most highly amplified or most unstable disturbance. Hence, it is important to determine 
whether the most highly amplified mode is two- or three-dimensional. 

Benjamin (1961) employed Squire's transformation to infer the properties of temporally 
growing three-dimensional waves on planar film flow, and found that the most unstable long 
wave was two-dimensional. Recall that Squire's transformation shows that the stability of an 
oblique temporally growing disturbance depends solely on the component of the basic flow 
velocity profile in the direction normal to the wave front. Thus, the eigenvalues of a temporally 
growing three-dimensional disturbance can be related to those of a temporally growing 
two-dimensional disturbance at a lower Reynolds number. 

It is of interest to note that most experimental studies of falling film flow have involved 
spatially growing rather than temporally growing waves. Shuler & Krantz (1976) recently have 
found that the predictions of linear stability theory for spatially growing two-dimensional 
disturbances agree more favorably with experiment than do the predictions based on temporally 
growing disturbances. These results suggest that although temporally growing two-dimensional 
long waves are more highly amplified than temporally growing three-dimensional waves at the 
same values of the flow parameters, the possibility exists that spatially growing three- 
dimensional waves may be more highly amplified than spatially growing two-dimensional 
waves. If the latter were shown to be possible, it would provide some explanation for the 
surprisingly early appearance of three-dimensional waves on film flows. However, the proper- 
ties of spatially growing three-dimensional waves can in no way be inferred from the results 
presented in Shuler & Krantz (1976). This stems from the fact that Squire's transformation, 
when applied to spatially growing modes, indicates that three-dimensional distrubances are not 
equivalent to any physically significant two-dimensional disturbances. Thus, in order to deter- 
mine the most unstable mode for spatially growing distrubances in viscous flows it is necessary 
to solve the stability problem for both two- and three-dimensional disturbances. 
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Relatively few studies of spatially growing three-dimensional disturbances have appeared in 
the literature. Gaster (1970) developed a general proof that the most highly amplified mode in an 
incompressible plane parallel flow of an inviscid fluid is two-dimensional for either temporally 
or spatially growing disturbances. However, no such general proof exists for either temporally 
or spatially growing disturbances in viscous flows. Furthermore, it appears that no one has 
attempted to determine the most unstable spatially growing mode in a viscous flow. For this 
reason this note determines the eigenvalues for all spatially growing long waves in falling film 
flow. This flow is a convenient example of a viscous flow which permits one to examine the 
broader question of the influence of viscosity on the characteristics of spatially growing 
three-dimensional disturbances. 

FORMULATION OF THE LINEAR STABILITY PROBLEM 

Consider a film of thickness H flowing down a plane inclined at an angle 0 to the horizontal. 
The velocity profile of the unperturbed or basic film flow is given by U(y) = (3/2)a(1 - yE/H2), 
where ~ is the average velocity. The liquid has density p, kinematic viscosity v, and surface 
tension T; in this study it will be assumed to be in contact with an inviscid gas. A Cartesian 
coordinate system is placed such that the x-axis is in the streamwise direction; the y-axis is 
perpendicular to the plane of the basic flow such that y = 0 is at the unperturbed gas-liquid 

interface; and the z-axis is in the spanwise direction. 
The development of the equations of motion and associated boundary conditions ap- 

propriate to three-dimensional distrubances in this flow follows the formalism of classical linear 

stability theory. 
The linearized equations of motion can be combined and expressed in terms of only one 

dependent variable, v, the amplitude of the velocity perturbation in the y-direction. When 
nondimensionalized using H and ~ as the characteristic length and velocity scales, respectively, 

this equation assumes the form 

f~"-2(a2+/32)Y'+ (a2 +/32)2 z3 = iaRe[(U-('~))(tY'-(a2 +/32)t3) - U"~3] [11 

where the superscripts denote the order of differentiation with respect to y. The dimensionless 
boundary conditions appropriate to wavy film flow down an inclined plane, and the dimen- 
sionless surface kinematic condition also can be expressed in terms of one dependent variable 

t~ = 0 at y = 1, [2] 

t~' = 0 a t  y = 1,  [ 3 ]  

I Y'+ (a2+[3)- t3 = 0 a t  y = 0 ,  [4] 

- 3/2 

[3 c o t0+  (a2+/32) WeRe]/(-~-3/2)],- [aRe(-~-3/2)+ i3(a2 +/32)] 

x t3' + itY" = 0 at y = 0, [5] 

t 3 = - i a ( ~ - 3 / 2 )  at y = 0  [6] 

where a and/3 are the dimensionless wave numbers in the x and z directions, respectively, and 
to is the dimensionless frequency. This nondimensionalization introduces the Reynolds number 
Re =-f~H/v, and Weber number We =-T/(pf~2H), or equivalently, the surface tension group 

=- We.Re 513. Boundary conditions [2] and [3] express the no-flow and no-slip conditions at the 
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solid surface. Equation [4] expresses the condition of no drag force at the free surface. 
Boundary condition[5] represents the balance of the viscous, pressure, and surface tension 

normal stresses at the free surface. The kinematic surface condition is given by [6]. 

AN ASYMPTOTIC SOLUTION TO THE STABILITY PROBLEM 

Equation [1] is similar in form to the Orr-Sommerfeld equation describing the linear stability 

of two-dimensional disturbances. Benjamin (1957) has solved the latter equation for temporally 

growing two-dimensional disturbances on film flow down a plane, via a power series in y. The 
rate of convergence of this power series will be rapid only for small Reynolds numbers such as 

those associated with the long waves observed in the film flow of interest here. Since the linear 

stability problem defined by [1] through [6] differs from that of Benjamin only in the definitions 
of the parameters, the solution to the present problem can be obtained by the appropriate 
parametric substitutions in the solution given by [4.11] in Benjamin (1957), and is given by 

F 8 2 136 24 2] 
i[213(a2 + f l2)2 WeRe + (a 2 +/32)2 cot O] + 2to - 6a + i 3/ERe [ -  -~ to + f65 to a - ~-~ a j 

+ (a2 +/32) (3.6to - 4.8a) + ( - 9/4Re 2) 

x [ - 0.0016927to 3 + 0.0095945to 2a - 0.0169753to a 2 + 0.0102907a 3] + (i 3/2Re) (a 2 +/32) 

x [ - 0.0723810to 2 + 0.2020600to a - 0.1397615a 2] 

+ (a2 + /32)2(-O.O914284to + O.O742865a) + ( -  i 2-7 Re 3) 

x [ - 0.0000502to 4 + 0.0003382to 3a - 0.0008003to2ot 2 + 0.0008276to a 3 - 0.0003175a 4] 
! 

+ ( _ 9~4Re 2) (a2 + f12) [0.0021918to 3 _ 0.0106906to 2a + 0.017370to a 2 - 0.0092402a 3] 

+ (i 3/2Re) (a 2 + j~2)2[ _ 0.0225191to 2 + 0.0644643to a - 0.0468239a 2] 

+ (a 2 + f12)3[0.0364873to - 0.0594137a] = 0. [7] 

In arriving at [7] the power series was arbitrarily truncated at sixteen terms appropriate to 
retaining terms of order (aRe) 3 and Ot 6. Furthermore, no assumptions were made concerning 

whether a,/3, and to were real or complex. Thus, [7] includes both two- and three-dimensional, 

temporally and spatially growing modes. 

For the spatially growing three-dimensional waves of interest here, a - a, + iai is complex, 
/3 - /3r  is real, and to=to, is real. This then constitutes an eigenvalue problem of the form 

F(ai, a,, /3,, to,, We, Re, O)= O. [8] 

If the parameters We, Re, and 0 are specified, the wave properties a, and ai of infinitesimal 
disturbances having spanwise wave number/3, and frequency to, can be determined from the 
complex roots or eigenvalues of [7]. 

MOST UNSTABLE SPATIALLY GROWING MODE 

A numerical scheme for determining the most highly amplified wave predicted by [7] has 
been developed by Shuler (1974). The spatial amplification factor - a i  was maximized with 
respect to a,,/3,, and to,, for a wide range of the parameters 0, Re, and We. In all cases, when 
convergence was achieved, the spanwise wave number/3, was found to be zero within the 

single precision accuracy of the computer. This numerical search suggests that the most 
unstable wave is two-dimensional in the range of validity of [7]. However, a numerical search is 
unsatisfactory both because it cannot find a precisely zero value of/3, due to round-off errors, 
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and because it is not possible to search all possible combinations of the parameters. Clearly an 
analytical proof concerning the most unstable mode is desirable. 

It does not appear possible to prove analytically that the most unstable mode described by 

[7] is two-dimensional. However,  this proof is possible if the higher-order terms in [7] are 
discarded, thus obtaining an approximate solution for very long waves. If [7] is truncated to terms 
of order a the following is obtained: 

i[2/3(a 2 + ~3?)2WeRe + ( a  2 + ~?)2 cot 0] + 2tor - 6a = O. [9] 

In arriving at [9] the ordering arguments W e . R e  = 0(1/~?) and tor = O(ar) were invoked in 
addition to the ordering arguments implicit in the development of [7]. The real part of [9] can be 
solved for the frequency to~. The imaginary part of [9] can be solved implicitly for - a i  to obtain 

l f 2  4 2 2  2 9 "~ ] 
- a, = --~ 13 [otr - 6a~ at + 20tr fir- + Og 4 -- 2ai2fl? + f14] W e R e  + [a? - ai 2 +/3~']2 cot O] [10] 

The following conditions determine the most highly amplified disturbance: 

,9(-ai)/,ga,-=--6-- [ a ? - 3 a f + / 3 ? ]  W e R e + 4 c o t O  =0,  [111 

, 9 ( -  a,)/,9/3,. = --/3r ~ 8 jar2 - a' 2 +/371 W e R e  + 4 cot 0[ ) = 0. 
6 t3  J 

[12] 

Clearly [11] and [12] imply that either ar = 0 or/3r = 0 for the most unstable mode. However,  
when the condition ar = 0 is substituted into [10] and [12], all such modes are found to be stable 

for/3~# 0 and neutrally stable for/3r = 0. Hence/3~ = 0, and the most unstable spatially growing 
long wave is two-dimensional. 

A slightly more general proof can be obtained by retaining terms of order a 2 in [7] while 
invoking the same ordering arguments as were used in the preceding proof. However,  this proof 
will not be given here as it is quite lengthy and adds relatively little to the conclusions of the 

preceding development for very long waves. The interested reader is referred to Shuler (1974). 

COMPARISON BETWEEN SPATIALLY AND TEMPORALLY GROWING MODES 

It is of interest to compare the predictions of the spatial and temporal formulations of this 
linear stability problem for three-dimensional disturbances. For temporally growing three- 

dimensional waves a - - -a r  is real, /3---/3r is real, and to---O~r + itoi is complex. The general 
solution then constitutes an eigenvalue problem of the form 

F(otr, to, fir, Re, We, O) = O. [13] 

The resulting temporal amplification factor toi was converted to an "equivalent" spatial 
amplification factor - a l  using the transformation of Gaster (1962). 

tol [14] 
- a t  - a todaa/  

Figure 1 shows the spanwise wave number/3r as a function of the streamwise wave number 
ar for Re  = 1.29, ~ = 2.89, and 0 = 90 °. This value of the surface tension group, corresponding 
to a light mineral oil, was chosen to illustrate the properties of a highly unstable film flow at a 
low Reynolds number. Note that increasing values of the surface tension group, or equivalently 



SPATIALLY GROWING THREE-DIMENSIONAL WAVES ON FALLING FILM FLOW 613 

0 . 7 5  

0 . 6 0  

0 . 4 5  

0.30  

0 . 1 5  

R e = 1 . 2 9 ; . ~ = 2 . 8 9 ;  W e - 1 = 0 . 5 2 7 ;  0 = 9 0 "  
I I I I 

I 

0 0.8 1.0 

a i l C l i m : - l l 4  

0 .2  0.4 0 .6  

(21, 

Figure 1. Spanwise wave number as a function of streamwise wave number showing contours of constant 
reduced spatial amplification rate predicted by the spatial formulation , and temporal formulation . . . . . .  ; 

Re = 1.20; r = 2,89; and 0 = 90 °. 

the Weber number, have a stabilizing influence on this flow. The differences between the 
predictions of the spatial and temporal formulation will be more pronounced at small values of 
the surface tension group since the transformation of Gaster is valid only for weakly amplified 
disturbances. The solid contours in figure 1 correspond to fixed values of the spatial am- 
plification factor predicted by the spatial formulation reduced with respect to aim, the spatial 
amplification factor of the most highly amplified wave predicted by the spatial formulation. The 
dotted contours correspond to fixed values of the spatial amplification factor predicted by the 
temporal formulation reduced with respect to ram. For values of adm,~ < 0.5 the predictions of 
the two formulations were nearly identical. The most highly amplified wave predicted by both 
formulations corresponds to/3, = 0, thus implying two-dimensional disturbances. The temporal 
formulation predicts a maximum amplification factor ai,,r = 0.0430 at ar = 0.461. However, this 
value of -a i  corresponds to a band of waves in the spatial formulation indicated by the solid 
contour for -aimr; that is, the spatial formulation predicts a higher amplification rate for the 
most unstable wave given by a~,, = 0.0440 at ar = 0.469. Since our results suggest that the 
spatial amplification rate of the most unstable wave is increasing with Reynolds number, the 
difference between the predictions of the spatial and temporal formulations might be expected 
to be more pronounced at higher Reynolds numbers. However, it is doubtful[7] can be applied 
at Reynolds numbers significantly greater than unity. 

CONCLUSIONS 

This represents the first analysis of spatially growing three-dimensional disturbances in 
falling film flow, and appears to be the first analysis of spatially growing three-dimensional 
disturbances in a viscous flow of any type. A comparison between the predictions for spatially 
and temporally growing three-dimensional disturbances indicates that the amplification rates for 
disturbances in this flow can be sufficiently large, even at low Reynolds numbers, to result in a 
difference between the predictions of the spatial and temporal formulations of this linear 
stability problem. The principal conclusion of this note is that the most unstable spatially 
growing mode is two-dimensional for long waves. 
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